Приветствую Вас, уважаемые Читатели! Парадоксальным утверждениям из теории множеств посвящено много материалов на моём канале. Сегодня пришло время обратиться к одному из наиболее очевидных и простых - теореме Кантора-Бернштейна. Один из ключевых вопросов теории множеств - в определении соотношения размеров множеств. Чего больше: натуральных чисел или иррациональных? Где больше точек: на плоскости или на единичном отрезке? Или, может быть, их одинаковое количество? Разбираясь формальным образом в этих понятиях, мы и придём к желанной теореме...
В лекции представлены основные определения раздела "Множества", при этом основной упор делается на операциях над множествами классической теории множеств, перечислены основные законы и также показаны диаграммы Эйлера-Венна, графически изображающие как сами множества , так и результаты операций над ними. Существуют ещё способы задания множеств, их можно указать в комментариях к лекции. Приняты следующие обозначения числовых множеств, они будут указаны перечнем и занимать несколько слайдов. Важным понятием теории множества является понятие подмножества...