Теория вероятностей – необычный раздел высшей математики. Во-первых, она оперирует необычными объектами – не более привычными нам числами и геометрическими фигурами, а событиями и тесно связанными с ними вероятностями. Во-вторых, начало формирования ее как науки относится только ко второй половине XVII века, а изложить основы теории вероятностей так, чтобы они были теоретически корректны, понятны и практически полезны, удалось только к первой половине XX века. Известно, что первыми вероятностными проблемами, привлекшими внимание, стали проблемы, возникающие в азартных играх...
Одно из самых важных дискретных вероятностных распределений — геометрическое. Обсудим его и один способ, как с его помощью получать быстрые ответы на сложные вопросы. Итак, сама случайная величина имеет смысл числа попыток до первой удачной, а вероятность удачи в каждой попытке равна p. Вероятность неудачи 1-p обозначим q. Так что возможные значение — это натуральные числа n от 0 и далее, а вероятности этих значений равны p, pq, pq² и так далее. Легко проверить, что сумма таких вероятностей дает единицу...