1,2K подписчиков

Субъективные критерии оценки сцены и помещений аудиофилами.

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.

Напоминаем Вам, что ознакомиться с нашей аудиотехникой вы можете на сайте audio-tube.ru

Сегодня у нас сборная очередная, интересная статья, посвященная критериям оценки сцены и помещений.

Отдельно отмечаем, что мнение Demograf Audio может не совпадать с мнением автора статьи.

Источники (авторы): Ирина Алдошина. Основы психоакустики

Итак, поехали!

Субъективные критерии оценки акустических помещений

В одном из предыдущих номеров ("Звукорежиссер", 7/2000) была опубликована статья, освященная новой технологии создания виртуального трехмерного звукового мира - аурализации.

В основе ее алгоритмов лежит обработка звукового сигнала, выполненная таким образом, чтобы вызвать у слушателя такое же ощущение восприятия музыки, как если бы он слушал ее в концертном зале, церкви, аудитории и другом помещении по его выбору.

Создание таких алгоритмов оказалось возможным только в настоящее время, и не только благодаря появлению новых возможностей компьютерной обработки звука, но и благодаря накопленному многолетнему опыту по выявлению основных критериев, которые определяют субъективное восприятие "хорошей" или "плохой" акустики зала.

Прежде, чем переходить к новым разделам психоакустики: восприятию "тембра" и др., что планируется сделать в первых номерах следующего года, постараемся коротко рассмотреть основные критерии субъективной оценки акустики залов.

Это важно не только для понимания новых технологий 3DSound, которые сейчас активно внедряются в практику работы со звуком, но и для работы с компьютерными аудиопрограммами, так как заложенные в них алгоритмы позволяют моделировать различные эффекты, имитирующие характеристики помещения.

Звукорежиссеру необходимо понимать, к каким субъективным изменениям в восприятии звука может привести применение этих эффектов.

Любому музыканту, композитору, звукорежиссеру и просто любителю хорошей музыки прекрасно известно, какое огромное влияние оказывает на качество воспринимаемого звука акустика помещения, в котором исполняется музыка.

Достаточно вспомнить, как звучит орган в огромном соборе, и представить, что останется от этого звучания, например, в маленькой заглушенной комнате. Каждый стиль музыки требует своей оптимальной акустики зала, и композиторы прошлого учитывали это при создании своих произведений.

Строительство хороших залов было и остается в значительной степени искусством, как и создание хороших музыкальных инструментов (скрипок, например), несмотря на огромные успехи, достигнутые в настоящее время в анализе объективных процессов формирования звукового поля в помещении.

Поскольку проблема расшифровки "слухового образа" остается еще окончательно не решенной, то и в оценке качества звучания в различных залах решающим является субъективная экспертиза.

Поэтому за последние годы значительные усилия были приложены к установлению связи между объективно измеряемыми параметрами звукового поля в помещениях - и субъективной оценкой их качества звучания.

По этим вопросам в литературе опубликованы многочисленные, иногда противоречивые результаты.

В качестве основы примем критерии, предложенные известнейшим специалистом в области акустики Беранеком.

Субъективная оценка акустики помещений для музыкальных и речевых программ представляет значительные трудности, поскольку требует решения следующих проблем: выбор метода оценки, выбор критериев оценки, установление их связей с объективными параметрами.

Выбор метода оценки

Все используемые методы представляют собой специально организованные тесты на прослушивание, которые проводятся тремя способами.

Слушатель производит оценку качества звука, находясь в синтезированном звуковом поле, создаваемом, например, распределенной системой громкоговорителей в заглушенной камере.

Этот способ позволяет гибко менять и четко фиксировать параметры звукового поля: уровни звукового давления, время реверберации, время запаздывания и направление прихода ранних отражений и т.д.

Такие эксперименты проводятся в достаточно большом объеме, особенно в Японии.

Однако это трудоемкий эксперимент, кроме того, из-за конечного количества источников он создает упрощенную картину звукового поля в помещении; - непосредственное прослушивание оркестра или исполнителей в испытуемых залах опытными экспертами с последующей статистической обработкой их оценок.

Это наиболее точный метод, однако требует большого объема экспериментов, при которых трудно добиться повторяемости результатов, и сложно менять отдельные параметры; - на основе стереофонических записей, сделанных в испытуемых залах с помощью "искусственной головы" и последующем прослушивании через головные телефоны или громкоговорители.

Этот способ позволяет получить достаточно точные результаты, хотя техника бинауральной записи как таковая имеет свои проблемы.

Такие эксперименты многократно проводились (прежде всего, в Германии) и были получены очень ценные результаты.

В любом случае, результаты субъективных оценок акустики помещений существенно зависят от выбора экспертов: их профессии, опыта прослушивания, вкусов общей и музыкальной культуры, и т.д.

Выбор критериев оценки

Одной из первых попыток установить "словарь" критериев субъективной оценки акустики музыкальных залов была предпринята Беранеком.

На основе личного опыта, а также из бесед с известными дирижерами, музыкантами, опытными слушателями, он выбрал из многочисленных субъективных оценок различных залов (теплый, холодный, пустой, глухой и др.) восемнадцать наиболее употребляемых субъективных критериев, а из них десять наиболее значимых и независимых.

Хотя эта методика вызвала ряд возражений специалистов, но она послужила толчком к многочисленным исследованиям, и в настоящее время некоторые из результатов этих исследований введены в стандарты.

К наиболее распространенным субъективным критериям для оценки акустического качества помещений относятся: гулкость, жизненность (liveness); полнота звука (fullness); различимость или ясность (definition или сlarity); интимность (intimaсy), теплота (warmth), пространственность (spaсiousness ), громкость (loudness); баланс (balanсe ); ансамбль (ensemble ); тембр (timbre ), а также отрицательные факторы: эхо, порхающее эхо (flutter), мешающие шумы.

Установление связей объективных параметров качества звучания и их субъективных оценок

Прежде чем приступить к решению этой задачи, была выполнена большая работа по общей классификации всемирно известных концертных залов по качеству звучания в них различных музыкальных произведений на основе анкетных опросов музыкантов, музыкальных критиков, опытных слушателей и т.д.

В результате все рассмотренные залы (а было изучено более пятидесяти известных залов в разных странах мира), были сгруппированы в три группы - А, В, С в соответствии с качеством звука исполняемых в них произведений.

Соответственно, в этих залах были проведены измерения объективных параметров реверберационного процесса.

Вопрос о выборе наиболее значимых объективных параметров, современных компьютерных методах расчета и измерения структуры звукового поля и временной структуры процессов затухания звука (т.е. параметров реверберационного процесса) в помещениях различной конфигурации заслуживает отдельного разговора.

Здесь коротко остановимся только на некоторых параметрах, которые были использованы Беранеком в процессе анализа субъективных оценок.

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.

Звук, который достигает слушателя в любом помещении прослушивания, содержит информацию как о параметрах звука, созданных музыкальным инструментом, певцом и т.п., так и о свойствах помещения, в котором этот звук воспроизводится.

Помещение прослушивания (студия, концертный зал, стадион и др) является своего рода линейным фильтром, который производит обработку поступившего в него звукового сигнала, изменяя его временную структуру и изменяя его спектр, что, соответственно, приводит к изменению его тембра и определяет качество звучания.

Обусловлено это, прежде всего, тем, что в помещении, наряду с прямым звуком, к слушателю приходят многочисленные отражения, которые и формируют структуру реверберационного процесса, характерную для каждого вида помещения - она зависит от его размера, формы, отделки, наличия слушателей и др.

Пример реверберационного процесса показан на рисунке 4.

Как видно из рисунка, в начальный момент при использовании в качестве источника, например, короткого импульсного сигнала, к слушателю поступает прямой звук, затем, через определенное время, начинают поступать отражения от различных поверхностей, которые сначала четко разделены друг от друга по времени, затем количество их увеличивается, звуковое поле становится диффузным, и уровень звукового давления в данной точке помещения постепенно спадает - такой процесс спада звука в помещении и называется реверберационным.

Для описания параметров реверберационного процесса обычно используется величина времени реверберации (ВР), которая определяется как "время, в течение которого уровень звукового давления уменьшается на 60 дБ".

Величина времени реверберации определяется объемом зала и общим коэффициентом звукопоглощения в нем, она не зависит от формы зала, структуры распределения поглощающего материала и т.д., т.е. является усредненной характеристикой.

Однако исследования по оценке качества звучания в различных помещениях заставили ввести целый ряд дополнительных параметров, более тонко характеризующих реверберационный процесс.

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-2

"Ранний звук" определяется как прямой звук и отражения, поступившие в течение первых 80 мс после прихода прямого звука.

Причем существенное значение имеет направление прихода этих ранних звуков - так, например, звуки, пришедшие от боковых стен в первые 80 мс, создают ощущения расширения источника звука, что улучшает качество восприятия музыки.

"Громкость ранних звуков" определяется энергией прямого звука плюс энергия отраженных звуков, пришедших в первые 80 мс. "Громкость реверберирующего звука" определяется общей звуковой энергией, которая достигает слушателя после 80 мс.

"Раннее время реверберации" (РВЗ) – время затухания звука после выключения источника, когда уровень звукового давления уменьшается на 10 дБ.

Кроме того, для сопоставления с субъективными оценками используется также время реверберации (ВР) при спаде звукового давления от -5 до -35 дБ при заполненных залах (т.е. часть реверберационной кривой).

"Коэффициент внутрислуховой кросс-корреляции (КВСКК)" определяется как коэффициент корреляции сигналов, поступивших на два уха при разном времени интеграции и в разных частотных диапазонах.

Обычно используется время интеграции от 0 до 80 мс в трех октавных полосах: 500, 1000 и 2000 Гц.

Этот коэффициент характеризует степень различия звуковых сигналов в двух ушах как по времени, так и по амплитуде.

Кроме этих, для сравнения с субъективными оценками используется и целый ряд других параметров: эквивалентная реверберация, распределение уровней звукового давления и др.

Сравнение результатов субъективных экспертиз, проведенных в вышеуказанных залах, с приведенными выше параметрами, показало отчетливую связь между общим впечатлением от акустики зала и временем реверберации, причем в качестве времени реверберации ВР использовалось значение времени затухания от уровня -5 до -35 дБ (т.е. часть кривой затухания) для заполненных публикой залов, и время ранней реверберации РВЗ от 0 до -10 дБ.

Как следует из таблицы, при переходе от залов группы А к группе В и С величины ВР и РВЗ изменяются от среднего значения 2 и 2,6 с (группа А) до 1,6 и 1,9 с (группа В) и до 1,4 и 1,75 с (группа С).

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-3

На основе полученных результатов была выполнена более дифференцированная оценка отдельных субъективных параметров акустики залов, и исследована их связь с измеренными объективными характеристиками.

"Гулкость-жизненность" - эти термины прежде всего связаны с оценкой общего впечатления от акустики залов, т.е., как было указано выше, в значительной степени связаны с временем реверберации (ВР).

Все помещения по этому критерию ранжируются достаточно четко (соборы, концертные залы, студии и др.).

Для каждого вида музыки и речи существуют оптимальные пределы изменения времени реверберации, которые зависят от объема помещения и частоты (например, рис. 5), которое меняется в пределах от 0,4 до 1 с для речи, от 1 до 1,5 с для камерной музыки, от 1,8 до 2,2 с для симфонической и т.д.

Реверберация - один из эффектов, который учитывался композиторами при создании произведений, например, композиторы органной музыки специально делали паузы, чтобы была слышна длинная реверберация в соборе.

Наибольшее влияние на ощущение "жизненности" звуков оказывает значение времени реверберации на средних частотах.

В помещениях, в том числе в студиях, где время реверберации слишком короткое для данного музыкального жанра, звук характеризуется как "мертвый", "сухой".

Все, кто слышал, как звучит музыка в заглушенной камере, могут отчетливо представить, что именно имеется в виду.

Наоборот, если время реверберации слишком велико для данной музыки, звук характеризуется как слишком "грязный", "водянистый". Поэтому введение при обработке дополнительных эффектов реверберации, не соответствующих стилю и характеру музыки, может вызвать аналогичные субъективные ощущения.

Полнота тона (звучность) также зависит от времени реверберации, но также и от отношения громкости реверберирующих звуков, которая определяется энергией звуков, приходящих после первых 80 мс (Е1) к громкости ранних звуков, которые определяются энергией прямого звука и первых отражений до80 мс (Е2).

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-4

Чем больше отношение Е1/ Е2, тем выше "полнота тона".

Для церквей это отношение велико, и звук воспринимается как "полнозвучный". В помещениях, где энергия отраженных звуков мала, звук будет казаться "пустым".

В залах (например, старинных оперных театрах), где звук от исполнителя имеет возможность свободно подниматься и отражаться от высоких потолков, энергия в реверберирующих звуках будет достаточно большой и звучание также будет "полным".

Для обеспечения этого качества звука большое значение имеет выбор формы зала и размещение специальных отражающих панелей и других деталей убранства.

В опциях reverb почти всех компьютерных аудио программ пользователю предоставляется возможность произвольно менять соотношение ранней и поздней частей энергии в реверберирующем звуке.

Однако использование этой возможности без понимания того, к каким изменениям субъективного восприятия это можно привести, может сделать обрабатываемую композицию "сухой" и "пустой".

Допустимые пределы изменения этого параметра для хороших залов будут приведены ниже. Различимость и ясность.

Когда музыканты говорят о "различимости" или "ясности", имеется в виду степень, с которой отдельные звуки в музыкальном произведении четко разделяются друг от друга.

Имеется два вида "ясности" (различимости): "горизонтальная" и "вертикальная". Горизонтальная относится к звукам, следующим друг за другом.

Композитор использует специальные приемы, чтобы обеспечить ее: темп, повторение тонов во фразе, относительную громкость последовательных тонов и т.д. Исполнитель также может влиять на горизонтальную различимость выбором манеры исполнения.

Акустические факторы в помещении, которые определяют "горизонтальную различимость" музыкального произведения - это величина времени реверберации и отношение громкости (энергии) ранних звуков к громкости (энергии) реверберирующего звука: С80= Е2/Е1, т.е. факторы те же, но отношения обратные.

Таким образом, увеличение "горизонтальной различимости" уменьшает полноту тона, и наоборот.

Список концертных залов, разделенных по категориям акустического качества. Вертикальная различимость - это степень, с которой звуки, звучащие одновременно, различаются на слух.

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-5

Она также зависит от стиля произведения, искусства исполнителя, акустики зала и тренированности слуха. Композитор влияет на нее выбором одновременно звучащих тонов, выбором инструментов и т.п., а исполнитель может влиять, меняя динамику звучания одновременных тонов и др.

Акустические факторы для вертикальной различимости - баланс звуков различных инструментов, который существенно зависит от акустических параметров сценического пространства; и также отношение энергии ранних звуков к энергии реверберирующего звука.

Таким образом, горизонтальная и вертикальная различимость (ясность) зависит как от музыкальных, так и от акустических факторов.

Их влияние должно быть заложено в замысел композитора, чтобы сделать музыку доступной аудитории.

Например, органные хоралы Баха, с их крупными длительностями, медленными мелодическими линиями и растянутой динамикой, требуют помещений с большим временем реверберации (более трех секунд) и высоким значением отношения полной реверберирующей энергии к энергии ранних отражений.

Они имеют малую горизонтальную различимость, но высокую полноту тона.

Концертам Моцарта, с быстрыми пассажами фортепьяно и развитой оркестровой фактурой, в противоположность органной музыке, необходимы помещения с относительно коротким временем реверберации и большим отношением ранней к реверберирующей энергии, т.е. с высоким горизонтальным и вертикальным разрешением.

Влияние темпа исполнения музыки на ощущения полноты и ясности звучания в помещениях с разными значениями времени реверберации и разным отношением Е2/Е1 показано в таблице на рисунке 6.

Здесь показана разделимость отдельных коротких звуков в музыкальном произведении в зависимости от времени реверберации ВР и ясности С80.

Как видно из таблицы, для помещений с коротким временем реверберации и большим С80 (первая строка, примеры а и b) индивидуальные тоны быстрой и медленной музыки разделяются отчетливо, и процессы их атаки и спада хорошо различимы, заметна быстрая часть спада звука самого инструмента I, и более медленная часть R из-за процесса реверберации.

Во второй строке, что соответствует помещениям с большим временем реверберации и средним значением ясности С80 (примеры с и d) атака отдельных звуков будет слышна, а часть участка спада звука инструмента будет "закрыта" реверберацией (т.е. звучание инструмента существенно "затягивается" за счет того, что звук в помещении затухает достаточно медленно).

При более быстром темпе исполнения уже и часть атаки, также как и спада звучания инструмента, будут плохо различимы из-за процесса реверберации.

Для примера е и f длина ВР та же, но отношение раннего звука к реверберирующему звуку меньше, при этом часть атаки и почти весь спад звука инструмента "закрыты" реверберацией, тоны различимы плохо, но полнота звука большая.

При быстром темпе f тоны едва различимы, они почти полностью скрыты реверберацией.

Полнота звуков максимальная, но играть staccato в таком помещении невозможно.

Еще больше влияние реверберации и ясности С80 сказывается на исполнении звуков разной громкости: примеры g и h и примеры i и j.

Как видно из таблицы, слабые тоны практически полностью маскируются процессом реверберации и становятся неразличимыми.

Эти соотношения в конкретном зале должны иметь в виду композитор и исполнитель, выбирая темп, фразировку и т.д.

Таким образом, разные стили музыки требуют различных значений вышеуказанных параметров.

О величине времени реверберации для концертных залов и музыкальных студий было сказано выше, что касается коэффициента ясности (различимости) С80, то для залов, оцененных музыкантами-экспертами как залы с хорошей различимостью, его значения находятся в пределах от -3,7 до -0,02 (среднее значение -2,5).

Современные компьютерные технологии дают возможность менять параметры, моделирующие процессы реверберации в разных помещениях, в очень широких пределах.

Достаточно сложные алгоритмы, например Acoustic Modeller, позволяют осуществлять "свертку" сигнала с импульсными характеристиками различных помещений, что дает возможность заставить звучать музыкальную композицию так, как если бы она звучала в этих залах.

Однако, выбирая параметры этих помещений или создавая собственные, всегда необходимо помнить, что несоответствие характеристик помещения (времени реверберации, отношения энергии ранних звуков к поздним и др.) стилю музыкального произведения и темпу его исполнения, может привести к совершенно противоположным ощущениям, чем это предполагалось, поэтому при создании электронных композиций или обработке фонограмм необходимо учитывать указанные критерии.

В первой части статьи ("Звукорежиссер", 10/2000) было отмечено, то в результате многочисленных экспертиз, выполненных известнейшим специалистом-акустиком Беранеком, было установлено, что к наиболее распространенным субъективным критериям оценки акустического качества помещений относятся: гулкость, жизненность (liveness), полнота звука (fullness), различимость (definition) или ясность (сlarity), интимность (intimaсy), теплота (warmth), пространственность (spaсiousness), громкость (loudness), баланс (balanсe), ансамбль (ensemble), тембр (timbre), а также отрицательные факторы: эхо, порхающее эхо, мешающие шумы.

Была рассмотрена связь таких субъективных критериев, как гулкость, жизненность, полнота звука, различимость или ясность с обьективными параметрами, характеризующими реверберационный процесс в помещении: время реверберации, отношение энергии ранних и поздних отражений и др.

Рассмотрим следующие критерии: интимность (присутствие, камерность, близость).

Они определяют для слушателя кажущийся размер пространства, в котором он слушает музыку. Разные стили музыки требуют разных значений "акустической интимности".

Интимность определяется разницей во времени между прямым и первым отраженным звуками, а также, частично, общей воспринимаемой громкостью звучания, так как слушатель предполагает, что звук в маленьком помещении кажется громче, чем в большом.

Основной вклад в ощущение "интимности" вносят первые отражения от боковых стен (в залах с достаточно высокими потолками), или от потолков при их сравнительно низкой высоте.

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-6

Как видно из рисунка 1, разница путей прямого (D) и отраженного (R1) звуков в первом зале меньше, чем во втором, и, соответственно, различается разница во времени прихода звуков, равная tn=(Rn-D)/C, где С скорость звука, а n = 1,2.

Это, естественно, приведет к тому, что интервал времени между прямым звуком и первым отражением (рис. 2) во втором зале будет больше.

Большая разница во времени прихода прямого звука и первого отражения создает у слушателя ощущение оторванности (отдаленности) от исполняемой музыки.

В залах с хорошей акустикой, предназначенных для симфонического репертуара, этот временной интервал составляет для слушателей, сидящих в центре зала, величину 15 30 мс.

В пределах этого времени, если отражения имеют похожий спектр и огибающую, а их громкость не выше прямого звука, они не воспринимаются как отдельные звуки, а помогают в улучшении локализации прямого звука (это явление известно как эффект Хааса).

Для скорости звука 340 м/с задержка на это время соответствует разнице в расстоянии примерно 12 м, что требует ширины зала порядка 18 20 м.

Композитор (звукорежиссер, исполнитель и др.) должен иметь в виду этот параметр, иначе будет несоответствие размеров помещения стилю музыки, которое очень четко ощущается слушателями, примером может служить звучание органа в маленькой комнате.

В старинной музыке (до 17 века) камерные произведения создавались в основном для малых ансамблей, и исполнялись в залах с малой разницей прихода ранних отражений (меньше 15 мс), что создавало ощущение близости ("интимности") звучания.

В 18-19 веках изменился стиль музыки, увеличились исполнительские составы и размеры помещений (оперные театры, концертные залы и др) и, соответственно, выросло время задержки до 30 мс.

В настоящее время, когда многие концертные залы имеют очень большие размеры, исполнение в них камерной музыки создает ощущение несоответствия размеров зала стилю.

Музыка как бы теряется в зале.

Для улучшения этой ситуации иногда используются дополнительные отражающие поверхности около сцены по бокам или на потолке, что позволяет создать дополнительные ранние отражения с меньшим временем запаздывания, и тем самым улучшить восприятие исполняемой музыки.

Пространственность - ощущение слушателя, что музыка идет от полной ширины зала, и звук окружает его со всех сторон, что обычно характеризует залы с хорошей акустикой.

Наиболее полно это ощущение проявляется при прослушивании, например, органа или хора в больших соборах. В противоположность этому, в залах с плохой акустикой звук кажется идущим как бы из "окна".

Тренированный слушатель (тем более звукорежиссер) может различить две составляющие в восприятии пространственности кажущееся расширение площади источника звука (ASW) и окружение (или "обертывание" LEV), когда слушатель чувствует себя погруженным в звук со все сторон.

По мнению многих экспертов, первая составляющая является одним из главных индикаторов акустического качества концертных залов и помещений прослушивания.

Она связана с уровнем боковых ранних отражений: чем выше уровень боковых отражений в помещении, тем больше кажущееся расширение источника.

Кажущаяся ширина звукового источника связана также с уровнем громкости на низких частотах СЗн2 (в основном в области частот 125 и 200 Гц).

Однако наибольшую связь с этим параметром показали результаты измерения коэффициента внутрислуховой кросс-корреляции сигнала КВСККр3.

Этот коэффициент определяет степень разности звуковых сигналов в двух ушах как по времени, так и по амплитуде.

Чем менее сходны звуки в левом и правом ушах, тем меньше этот коэффициент, и тем больше кажущееся расширение источника ASW=1- КВСККр3.

В случае, если звуки одинаковы, коэффициент становится равным единице, и кажущийся источник звука концентрируется в центре.

Эти результаты подробно разработаны в теории стереофонии.

Измерения, выполненные в различных залах с помощью прибора "искусственная голова" на двадцати позициях при разных положениях источников звука, показали, что значения этого коэффициента, усредненного в трех октавных полосах 500 Гц, 1 и 2 кГц, при интеграции по времени в интервале 0 80 мс КВСККр3 (р-ранний по времени прихода, 3-усредненный в трех полосах), дают хорошую корреляцию с субьективными оценками кажущегося расширения источника - ASW.

Все измеренные залы оказались четко ранжированы по этому параметру: для лучших по качеству звучания залов мира значения этого коэффициента КВСККр3 оказались в пределах 0,3 0,6.

Обертывание (погружение LEV) связано с ощущением позднего реверберирующего звука, поступающего со всех сторон (после 80 мс), и зависит от конструкции зала: наличия нерегулярностей стен, балконов и т.д., т. е. всех конструктивных элементов, которые обеспечивают приход звука с разных сторон (диффузность звукового поля).

Так, например, ощущения звучания музыки у слушателя, к которому отраженные звуки приходят со всех сторон: от потолка, стен, пола и т.д., будут существенно отличаться от ощущений сидящего под балконом слушателя, к которому звук приходит только с фронта.

Значение этого коэффициента также связано с коэффициентом внутрислуховой кросс-корреляции, усредненным за период времени от 80 мс до 1 с, однако статистически значимых измерительных данных по этому параметру еще не набрано.

Громкость - для оценки залов используется специальное субъективное понятие, характеризующее громкость источника звука при игре фортиссимо по отношению к некоторой "ожидаемой" громкости на месте прослушивания.

Наиболее благоприятное расстояние по этому параметру в большинстве залов для прослушивания прямого звука от оркестра 18 м, от солистов 6 15м.

Громкость определяется субъективным ощущением силы звука, она пропорционально плотности звуковой энергии на месте прослушивания.

Для объективной оценки громкости предложен такой параметр как сила звука СЗ, который определяется как разность уровней звукового давления, измеренного на шумовом сигнале на месте слушателя, и уровнем звукового давления от того же источника на том же расстоянии в заглушенной камере, при этом измерения проводятся в октавных полосах с частотами125, 250, 500 Гц, 1, 2 и 4 кГц.

При измерениях учитывается только энергия прямого звука и ранних отражений, пришедших в первые 80 мс.

Обычно нормируются два параметра: один, усредненный в полосах 125 и 250 Гц (Снч2), и другой в полосах 500, 1000 и 2000 Гц (Ср3).

Значения этих параметров для лучших залов оказались равными 6 и 6,2.

Теплота - отношение времени реверберации на низких частотах к времени реверберации на средних. Оно измеряется при заполненном зале, при этом время реверберации на низких частотах (125 Гц) должно быть равно времени реверберации на средних частотах (500 1000 Гц), или быть больше примерно на 20%.

"Теплота" субьективно определяется как звучность басов по сравнению со звучностью средних частот.

Беранеком был предложен критерий КНТ коэффициент низкого тона, равный отношению среднего значения времени реверберации ВР на частотах 125 и 250 Гц к среднему значению времени реверберации на частотах 500 и 1000 Гц:

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-7

Его измеренные значения для лучших концертных залов оказались в пределах 1,08 1,1.

Баланс - понятие, служащее для оценки громкости отдельных инструментов и групп инструментов по отношению к общей громкости оркестра.

Баланс должен быть как между разными группами инструментов, так и между оркестром и солистами.

Баланс зависит от особенностей околосценического пространства, размещения оркестрантов, от исполнительской концепции дирижера, звукорежиссерского решения, и др.

Ансамбль - понятие, включающее в себя стройность, слаженность совместного исполнения, в том числе ритмическую точность и синхронность исполнения отдельных партий.

Чувство ансамбля зависит от слышимости собственного исполнения и взаимной слышимости, что определяется в значительной степени конструкцией сцены и поверхностей вблизи нее.

Вопросами акустики сцены и околосценического пространства, и их влияния на общее звуковое впечатление в зале, сейчас занимается много исследователей, и получены достаточно интересные результаты.

Тембр - понятие сложное и многогранное, проблемам его восприятия уделяется сейчас особое внимание в психоакустике.

Этой теме будут посвящены очередные статьи.

Можно пока принять определение, предложенное Беранеком, хотя имеются и другие: "тембр качество звука, иногда его называют "окраской звука", которое позволяет отличить звук одного инструмента или голоса от другого".

Каждый инструмент имеет свой характерный тембр звучания, достаточно вспомнить исполнение одной и той же мелодии на разных инструментах, например, на фортепьяно или органе, который определяется его конструкцией и материалами, из которых он изготовлен.

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-8

Тембр зависит от структуры звука во все периоды его звучания: в момент установления, в стационарный период и в момент спада.

Осциллограмма звука скрипки С4 и трехмерный спектр показаны на рисунках 3 и 4.

Акустические свойства помещения оказывают влияние на все этапы звучания и, соответственно, на воспринимаемый тембр.

Как уже было отмечено в первой части этой статьи, помещение является линейным фильтром, который производит обработку музыкального или речевого сигнала как во временной, так и в частотной областях.

Реверберационный процесс в помещении изменяет характер процессов нарастания (атаки) и спада звука, при этом структура распределения резонансных частот в помещении существенно влияет на его спектр.

Для помещений прямоугольной формы с отражающими стенами резонансные частоты могут быть рассчитаны по простой формуле:

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-9

где с - скорость звука, f k,m,n - частоты резонансных колебаний, L, B, H длина, ширина и высота помещения, k, m, n целые числа, определяющие номер моды (формы) колебаний.

Как видно из этой формулы, значения резонансных частот зависят от размеров помещения.

Результаты расчетов резонансных частот для больших помещений и для помещения с малыми размерами показывают, что первые дискретные резонансы для помещения с малыми размерами попадают в область слышимых частот, и значительно окрашивают звучание.

На рисунке 5 показан пример спектра для помещения с размерами 9 х 7,5 х 5,8 м. На рисунке 6 - пример неравномерного распределения звукового давления в помещении на первой осевой резонансной частоте.

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-10

Плотность резонансных частот должна быть достаточно велика, чтобы не было заметно изменение тембра за счет резонансов.

Исполнение музыки в помещениях с малым объемом неизбежно приводит к искажению тембра за счет дискретных резонансов, малого времени реверберации, недостаточного временного интервала между прямым звуком и первыми отражениями, и др.

Музыка требует пространства, в частности, для музыкальных студий минимально допустимый объем должен быть не менее 200 м Таким образом, тембр существенно зависит от размеров и формы помещения, от распределения и величины затухания в нем, от наличия рассеивающих элементов, обеспечивающих диффузное звуковое поле, и многих других факторов.

С учетом всего этого и складывается искусство создания залов с хорошей акустикой.

Следует подчеркнуть, что влияние параметров помещения на тембр звучания очень существенно, о чем по собственному опыту хорошо знают музыканты-исполнители.

Поэтому выбор оптимального значения времени реверберации для каждого стиля музыки, а также оптимальных значений рассмотренных выше других параметров, является обязательным условием обеспечения хорошего звучания музыкальных и вокальных произведений в данном помещении.

Созданные за последние годы методы аурализации компьютерного моделирования звукового поля в помещениях, дающие возможность предварительного прослушивания звучаний различных источников (см. статью "Аурализация виртуальный звуковой мир", журнал "Звукорежиссер" 7/2000) открывают принципиальные новые возможности в проектировании концертных залов, студий и др., позволяя проверить различные варианты акустических решений и оценить их влияние на тембр звучания музыки и речи. На это раньше уходили годы, и поиск проходил методом "проб и ошибок".

Наряду с акустическими параметрами помещений, которые определяют положительные впечатления от прослушивания в них музыки и речи, существует целый ряд параметров, которые являются мешающими факторами при прослушивании.

К числу основных негативных факторов относятся: Эхо - заметное на слух повторение прямого звука. Заметность эха зависит от времени запаздывания и интенсивности отраженных сигналов.

При времени запаздывания меньше 80 мс ощущение эха практически отсутствует даже при достаточно больших уровнях сигнала.

Порхающее эхо - многократная периодическая последовательность эха, что создает тональную окраску звука (эффект гребенчатого фильтра), особенно если период последовательности меньше 20 мс.

Сильный эффект наблюдается при наличии длинных параллельных стен, что характерно для многих современных залов.

Присутствие эха может приводить к нарушению локализации звуковых источников, что совершенно недопустимо в помещениях для прослушивания музыки.

В классических залах использовались специальные рассеивающие поверхности: колонны, ложи и др., а также выбиралась не прямоугольная форма помещения, что и сейчас используется в хороших "акустических" студиях (см. фото).

Мешающие шумы - общее впечатление от любого исполнения музыки или речи может быть в значительной степени испорчено, если в зале имеется высокий уровень мешающих внешних или внутренних шумов.

В таких залах или студиях оказывается трудным, иногда практически невозможным, обеспечить звукозапись, и даже очистить фонограммы от шумов различного происхождения оказывается не всегда возможным, несмотря на наличие современных компьютерных технологий.

Уровень шумов в зале определяет динамический диапазон воспринимаемого музыкального или речевого сигнала, поскольку слабые уровни сигнала маскируются шумом, что приводит к значительной потере качества звучания музыки или к потере разборчивости речи.

Уровень шумов в помещении зависит от нескольких причин: проникновение внешних шумов от транспорта и др.

Именно для борьбы с этими шумами применяются различные способы звуко- и виброизоляции при строительстве концертных залов и студий.

Для этого строят студии в тихих местах, используют дополнительные стены на отдельном фундаменте типа "здание в здании", применяют специальные звуко- и виброизоляционные материалы и т.д.; -возникновение внутренних шумов от вентиляционных, осветительных и других систем, а также шума от публики.

При строительстве студий затрачиваются значительные средства на уменьшение уровней шумов от различных обеспечивающих систем.

Общий уровень шумов в хороших залах и студиях должен соответствовать международным нормам, т.е. быть ниже кривой NC-20, предпочтительнее NC-15.

Соответствующие кривые допустимых шумов показаны на рисунке 7.

Общее акустическое впечатление от помещения, в котором прослушиваются музыка и речь, складывается из всех вышеперечисленных факторов.

Значения основных вышеуказанных параметров для трех залов, отнесенных экспертами к лучшим залам мира по качеству звучания музыки, приведены в таблице 1:

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-11

Способы, которыми обеспечиваются оптимальные значения объективных параметров, различаются в зависимости от назначения помещения: концертные залы, аппаратные звукозаписи, домашние помещения прослушивания и др.

Полученные результаты имеют существенное значение, поскольку они позволили выявить ряд объективных параметров, обеспечивающих устойчивую корреляцию с субъективной оценкой качества звучания в различных залах.

К их числу относятся, наряду со временем реверберации ВР, отношение ранней энергии к реверберирующей С80, интервал времени между прямым звуком и первыми отражениями t1, меры громкости СЗр3, СЗнч2, коэффициент низких тонов КНТ, коэффициент кросс-корреляции КВСККр3 и др.

Измерение этих коэффициентов в студиях, концертных залах, аудиториях и др. может оказать существенную помощь звукорежиссерам в выборе и при модернизации помещений для звукозаписи, а также при моделировании соответствующих условий с помощью компьютерных технологий.

Дамы и господа, аудиофилы и меломаны, здравствуйте. Добро пожаловать на Dzen канал магазина Demograf AE, посвященный аудиотехнике.-12