1 подписчик

Философские проблемы в трудах В. Гейзенберга (по работе «Язык и реальность»).

Вернер Гейзенберг 1901-1976. W. Heisenberg. Physics and philosophy. — New York: Harper & Row, 1958. Русский перевод: В. Гейзенберг. Физика и философия. Часть и целое. — М.: Наука, 1990.

В истории науки поразительные открытия и новые идеи всегда приводили к научным дискуссиям; эти дискуссии вызывают появление полемических публикаций, и такая критика часто совершенно необходима для развития последних. Но эти споры почти никогда ранее не достигали той степени резкости, которую они приобрели после создания теории относительности, а также — в меньшей степени — квантовой теории. Эту бурную реакцию на новейшее развитие современной физики можно понять, только признав, что это развитие привело в движение сами основы физики и, возможно, естествознания вообще и что это движение вызвало ощущение, будто вся почва, на которую опирается естествознание, уходит из-под наших ног. Но вместе с тем это означает, пожалуй, и то, что еще не найден правильный язык, на котором можно говорить о новом положении дел, и что неточные и отчасти неправильные утверждения, высказанные в ряде случаев в пылу воодушевления новыми открытиями, вызвали появление всякого рода недоразумений.

Первичным языком, который вырабатывают в процессе научного уяснения фактов, является в теоретической физике обычно язык математики, а именно — математическая схема, позволяющая физикам предсказывать результаты будущих экспериментов. Физик может довольствоваться тем, что он обладает математической схемой и знает, как можно ее применять для истолкования своих опытов. Но ведь он должен говорить о своих результатах также и не физикам, которые не будут удовлетворены до тех пор, пока им не будет дано объяснение и на обычном языке, на языке, который может быть понят каждым. Но и для физика возможность описания на обычном языке является критерием того, какая степень понимания достигнута в соответствующей области. В каком объеме возможно вообще такое описание? Можно ли, например, говорить о самом атоме? Это настолько же языковая, насколько и физическая проблема

Язык был создан человеческой расой в доисторическое время как средство для передачи сообщений и как основа для мышления. Предполагается, что, если некоторое слово употребляется достаточно часто, следовательно, мы более или менее точно знаем, что оно означает. Хорошо известен факт, что слова определены не столь четко, как это может показаться на первый взгляд, и что они обладают только некоторой ограниченной областью применения: например, можно говорить о куске дерева или о куске железа, но нельзя говорить о куске воды. Слово "кусок» не допускает его применения к жидким телам. Маленький мальчик приходит в магазин с пфенингом в руке и спрашивает: «Могу я у вас купить за один пфенинг конфетную смесь?" Продавец берет две конфеты из своих ящиков, дает их мальчику и говорит: "Смесь ты можешь сделать из них сам". Несколько более серьезный пример проблематичного соотношения слов и понятий представляет собой факт применения слов «красный" и "зеленый" дальтониками, хотя здесь, очевидно, границы применения этих слов дальтониками должны проходить совсем иначе, чем у других людей.

Эта принципиальная непосредственность смысла слов была осознана, разумеется, очень давно и вызвала желание давать определения, т.е., как гласит определение слова «определение", устанавливать границы, указывающие, где это слово может применяться, а где нет. Но определения могут быть даны, естественно, только с помощью других понятий, и в конце концов мы должны будем все-таки полагаться на некоторые понятия, которые принимаются так, как они есть, без анализа и определений.

С другой стороны, логический анализ приносит с собой и опасность слишком большого упрощения. В логике специальные языковые структуры и простые схемы рассуждений, а другими языковыми структурами пренебрегают. Например, ассоциациями между промежуточными значениями слов

С другой стороны, наука ведь должна основываться на языке как на единственном средстве передачи сообщений, и поэтому там, где проблема однозначности имеет большую важность, логические схемы должны играть свою роль. В естествознании мы пытаемся единичное вывести из общего: единичное явление должно быть понято как следствие простых общих законов.

В теоретической физике мы пытаемся понять группы явлений, вводя математические символы, которые могут быть поставлены в соответствие некоторым фактам, а именно результатам измерений. Для символов мы находим имена, которые делают ясной их связь с измерением. Этим способом символы связываются, следовательно, с обыденным языком. Но затем символы связываются между собой с помощью строгой системы определений и аксиом, и в конце концов законы природы приобретают вид уравнений между символами. Бесконечное многообразие решений этих уравнений соответствует тогда бесконечному многообразию единичных явлений, возможных в данной области природы. Таким образом, математическая схема отображает рассматриваемую группу явлений в той мере, в которой соблюдаются соотношения между символами и измерениями. Эти соотношения позволяют также затем выразить сами законы природы в понятиях обыденного языка, так как наши эксперименты, состоящие из действий и измерений, всегда могут быть описаны этим языком.

В процессе расширения наших научных знаний увеличивается и сфера применимости языка. Вводятся новые понятия, а старые начинают употребляться в новых областях в ином смысле, чем при их употреблении в обычном языке. Такие слова, как энергия, электричество, энтропия, представляют собой хорошо известные примеры. Так мы развиваем научный язык, который можно рассматривать как естественное расширение обычного языка. В позапрошлом столетии в физику был введен ряд новых понятий, и в некоторых случаях понадобилось значительное время, прежде чем физики привыкли к употреблению этих новых понятий. Понятие "электромагнитного поля", например, в известном смысле содержалось уже в работах Фарадея, и то, что позднее стало фундаментом теории Максвелла, не легко и не сразу было принято физиками, которые ранее свое внимание направляли прежде всего на изучение механического движения материи.

Все понятия, введенные в физику до конца позапрошлого столетия, образовали замкнутую систему, которая может быть применена к широкому кругу явлений. В это до некоторой степени спокойное состояние физики квантовая теория и специальная теория относительности внесли внезапное, сначала медленное, а затем постепенно убыстряющееся изменение основ естествознания. Действительной проблемой, стоявшей за многими спорными вопросами, являлся тот факт, что не существовало никакого языка, на котором можно было бы непротиворечиво говорить о новой Ситуации. Обычный язык основывался на старых понятиях о пространстве и времени, и только этот язык представлял собой средство однозначной передачи сообщений о расположении приборов и результатах измерений. Но одновременно эксперименты показывали, что старые понятия могут быть применены не повсюду.

С другой стороны, относительно языка с течением времени было признано, что, возможно, не следует слишком строго настаивать на определенных принципах. Возможно, правильнее и проще подождать дальнейшего развития языка, который через некоторое время благодаря этому развитию будет соответствовать новому положению дел.

Но самая трудная проблема в отношении применения языка возникает в квантовой теории. Здесь нет никаких простых направляющих принципов, которые бы нам позволили связать математические символы с понятиями обычного языка. Единственное, что прежде всего знают, это тот факт, что наши обычные понятия не могут быть применены к строению атома. Мы хотим каким-то образом говорить о строении атома, а не только о наблюдаемых явлениях, к которым, например, относятся черные точки на фотографической пластинке или водяные капли в камере Вильсона. Но на обычном языке мы не можем этого сделать.

Понятие «температура» выступает в классической теории теплоты как понятие, описывающее объективные черты реальности, объективное свойство материи. В повседневной жизни довольно легко определить с помощью термометра, что мы понимаем под утверждением, что некоторое тело имеет определенную температуру. Но если мы хотим определить, что могло бы означать понятие "температура атома", то, даже если исходить при этом из понятий классической физики, мы все равно оказываемся в очень затруднительном положении Значение температуры может быть поставлено в связь с определенными значениями статистических ожиданий некоторых свойств атома, но есть основание сомневаться в том, следует ли называть такую величину статистического ожидания объективной. Понятие «температура атома» определенно ненамного лучше, чем понятие "смесь" в истории о маленьком мальчике, покупавшем конфетную смесь.

Язык, по крайней мере в определенной степени, уже приспособился к действительному положению вещей. Но он не является настолько точным языком, чтобы его можно было использовать для нормальных процессов логического вывода, этот язык вызывает в нашем мышлении образы, а одновременно с ними и чувство, что эти образы обладают недостаточно отчетливой связью с реальностью, что они отображают только тенденции стать действительностью.

Неточность этого употребляемого физиками языка, заключенная в самой его сущности, привела к попыткам развить отличный от него точный язык, допускающий разумно определенные логические схемы в точном соответствии с математической схемой квантовой теории. математическая схема квантовой теории может быть истолкована как расширение или модификация классической логики. Должна быть явно изменена, в частности, основная аксиома классической логики. В классической логике предполагалось, что, поскольку некоторое утверждение вообще имеет какой-либо смысл, то или это утверждение, или отрицание утверждения должны быть истинными. Из двух высказываний — "здесь есть стол" и «здесь нет стола» — или первое, или второе утверждение должно быть истинным. "Tertium non datur", третья возможность не существует. Может случиться, что мы не знаем, правильно ли утверждение или его отрицание, но "в действительности" истинно только одно из них. В квантовой теории этот закон «tertium non datur» должен быть, очевидно, изменен.

Фон Вайцзеккер разъяснил, что необходимо учитывать различные ступени языка. Первая ступень имеет дело с объектами, например с атомами или электронами Вторая ступень относится к высказываниям об объектах. Третья может относиться к высказываниям о высказываниях об объектах. В таком случае на различных уровнях можно было бы пользоваться различными логическими схемами. Правда, в конечном счете необходимо перейти к обычному языку и тем самым к классической логике. Но фон Вайцзеккер предлагает рассматривать классическую логику в отношении квантовой логики подобным же образом "априорно", как априорно предстает классическая физика в квантовой теории. Классическая логика оказалась бы тогда содержащейся в квантовой логике как своего рода предельный случай, однако последняя представляла бы собой все-таки более общую логическую схему.

При возможном изменении классической логики необходимо иметь дело прежде всего со ступенью языка, относящейся к самим объектам. Рассмотрим, например, атом, движущийся в замкнутом ящике, который, допустим, разделен стенкой на две равные части. Пусть в стенке имеется маленькое отверстие, так что атом может случайно перелетать из одной половины в другую. Тогда, согласно классической логике, атом может находиться или в левой, или в правой половине ящика. Не существует никакой третьей возможности, "tertium non datur". Однако в квантовой теории необходимо добавить, поскольку вообще применяются слова "атом" и "ящик", что имеются еще другие возможности, которые представляют из себя странного рода смеси обеих ранее перечисленных возможностей. Эти смеси необходимы, чтобы объяснить результаты наших опытов. Можно, например, наблюдать свет, рассеянный атомом. При этом возможно провести три опыта. В первом атом заключен только в левой половине ящика (например, благодаря тому, что отверстие закрыто), и измеряется распределение интенсивностей рассеянного света. Во втором опыте атом заключен только в правой половине ящика, и снова измеряется рассеяние света. Наконец, в третьем опыте атом может свободно перемещаться по всему ящику туда и сюда, и опять с помощью измерительных приборов исследуется распределение интенсивностей рассеянного света. Если бы теперь атом постоянно находился или в левой, или в правой половине ящика, то распределение интенсивностей в третьем опыте должно было бы представлять собой смесь обоих предыдущих распределений интенсивности (в отношении, соответствующем промежуткам времени, которые атом проводит в одной и другой половине). Однако эксперимент показывает, что, вообще говоря, это не так. Действительное распределение интенсивностей вследствие рассмотренной ранее интерференции вероятностей изменяется.

Для того чтобы иметь возможность говорить об этой ситуации, фон Вайцзеккер ввел понятие "значение истинности". Любому простому альтернативному высказыванию типа "атом находится в левой (или в правой) половине ящика" сопоставляется как мера его "значения истинности" некоторое комплексное число. Если это число равно единице, значит высказывание истинно. Если число равно О, значит высказывание ложно. Но возможны и другие значения Квадрат абсолютного значения комплексного числа дает вероятность того, что высказывание является истинным. Сумма обеих вероятностей, относящихся к обеим частям альтернативы (в нашем случае — слева, справа), должна равняться единице.

Понятие "дополнительности» можно ввести с помощью следующего определения: всякое высказывание, не тождественное ни с одним из пары альтернативных высказываний — в нашем специальном случае ни с высказыванием "атом находится в левой половине", ни с высказыванием "атом находится в правой половине", — будет называться дополнительным по отношению к этим высказываниям. Для всякого дополнительного высказывания вопрос о том, находится ли атом слева или справа, неопределён. Однако выражение "неопределенно» никоим образом не эквивалентно выражению "неизвестно". "Неизвестно" означало бы, что атом в действительности находится или слева, или справа, и что мы только не знаем, где он находится. А "неопределенно" указывает на отличную от этого ситуацию, которая может быть описана с помощью дополнительного высказывания.

В классической логике для соотношения различных уровней характерно однозначное соответствие. Два высказывания — «атом находится в левой половине» или "истинно, что атом находится в левой половине» — логически относятся к различным уровням. В классической логике оба эти высказывания, однако, полностью эквивалентны, то есть — они оба или истинны, или оба ложны. Невозможно, чтобы одно было истинным, а другое — ложным. Однако в логической схеме дополнительности это соотношение запутаннее. Истинность или ложность первого высказывания действительно влечет истинность или ложность второго высказывания. Но ложность второго высказывания не влечет ложность первого высказывания. Если второе высказывание ложно, то находится ли атом в правой половине, с полной определенностью еще утверждать нельзя. Атом не обязательно должен находиться в правой половине. Полная эквивалентность обоих уровней языка относительно истинности высказываний еще сохраняется, но относительно ложности — уже нет. С этой точки зрения можно понять так называемую «устойчивость классических законов в квантовой теории»: всюду, где применение к данному эксперименту законов классической физики приводит к определенному выводу, этот же результат будет следовать и из квантовой теории, и экспериментально это также будет выполняться.

Все эти сложные определения и различия можно обойти, если ограничить применение языка описанием фактов, т. е. в нашем случае — результатов экспериментов. Но если говорить о самих атомных частицах, то необходимо или использовать (как дополнение к обычному языку) только математическую схему, или комбинировать ее с языком, который употребляет измененную логику или вообще не пользуется никакой разумно определенной логикой.

В экспериментах с атомными процессами мы имеем дело с вещами и фактами, которые столь же реальны, сколь реальны любые явления повседневной жизни. Но атомы или элементарные частицы реальны не в такой степени. Они образуют скорее мир тенденций или возможностей, чем мир вещей и фактов.