4 подписчика

Что такое комбинаторика и причём здесь круги Эйлера

Леонард Эйлер
Леонард Эйлер

Для начала узнаем что такое комбинаторика.

Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Комбинаторные мотивы можно заметить в символике китайской «Книги Перемен»(5 век до н.э.). По мнению её авторов, все в мире комбинируется из различных сочетаний мужского и женского начал, а также восьми стихий: земля, горы, вода, ветер, гроза, огонь, облака и небо. Большой интерес математиков вызывали магические квадраты. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют «сочетания».Античные греки рассматривали комбинаторные задачи. Хрисипп (IIIв. до н. э.) и Гиппарх(II в.до н.э.) подсчитывали сколько следствий можно получить из 10 аксиом. У Хрисиппа получилось более миллиона. Во все века математики исследовали задачи, связанные с перестановками и сочетаниями, включая перестановки с повторениями. Позднее Д.Кардано провел исследование азартной игры в кости . (Азартными называют те игры, в которых выигрыш зависит не только от умения игрока, но и от случайности). Было замечено, что при многократном бросании однородного кубика (все шесть граней которого отмечены соответственно числами 1, 2, 3, 4, 5, 6) число очков от 1 до 6 выпадают в среднем одинаково часто, иными словами, выражаясь языком математики, выпадение определённого числа очков имеет вероятность, равную 1/6. Аналогично вероятность появления на верхней грани кости чётного числа очков равна 3/6, так как из шести равновозможных случаев чётное число появляется только в трёх. Математически заинтересовались азартной игрой П.Ферма и Б.Паскаль. Помимо азартных игр, комбинаторные методы использовались в криптографии - как для разработки шифров, так и их взломов. Комбинаторика и треугольник Паскаля. Паскаль много занимался биномиальными коэффициентами и открыл их способ вычисления. Число сочетаний можно вычислять не через факториал, а с помощью арифметического треугольника. Строится треугольник: его бедра и вершина состоят из единиц, а в основании каждый элемент строки получается суммированием двух стоящих непосредственно над ним элементов. Паскаль также как и Лейбниц считается основоположником современной комбинаторики . А вот сам термин комбинаторика придумал Лейбниц. В 1666г. он опубликовал книгу «Рассуждения о комбинаторном искусстве ». Его ученик - Якоб Бернулли - основатель теории вероятности, изложил много интересного о комбинаторике. Дал научное обоснование теории сочетаний и перестановок. Изучением размещений занимался Я. Бернулли во второй части своей книги «Искусство предугадывания» в 1713 г., в которой указал формулы для числа размещений из n элементов по k, выводились выражения для степенных сумм .

Позднее обнаружили тесную связь между комбинаторными и аналитическими задачами Абрахам де Муавр Джеймс Стирлинг. Они нашли формулы для нахождения факториала. Окончательно комбинаторику, как раздел математики, оформил в своих трудах Эйлер. Кроме перестановок и сочетаний Эйлер изучал разбиение, а также сочетания и размещения с условиями.

Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений. При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.

Эйлер исследовал алгоритмы построения магических квадратов методом обхода шахматным конём. Две его работы (1776, 1779) заложили фундамент общей теории латинских и греко-латинских квадратов, огромная практическая ценность которой выяснилась после создания Рональдом Фишером методов планирования эксперимента, а также в теории кодов, исправляющих ошибки.

А теперь перейдём к самим кругам эйлера.

Круги Эйлера – это геометрическая схема, которая помогает находить и/или делать более наглядными логические связи между явлениями и понятиями. А также помогает изобразить отношения между каким-либо множеством и его частью.

Схема кругов эйлера
Схема кругов эйлера

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли на свой лад. Например, чешский математик Бернард Больцано использовал тот же метод, но с прямоугольными схемами.

Свою лепту внес также немецкий математике Эрнест Шредер. Но главные заслуги принадлежат англичанину Джону Венну. Он был специалистом в логике и издал книгу «Символическая логика», в которой подробно изложил свой вариант метода (использовал преимущественно изображения пересечений множеств).

Благодаря вкладу Венна метод даже называют диаграммами Венна или еще Эйлера-Венна.

Так зачем же нужны круги эйлера.

Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только.

Если говорить о видах кругов Эйлера, то можно разделить их на те, что описывают объединение каких-то понятий (например, соотношение рода и вида) – мы их рассмотрели на примере в начале статьи.

А также на те, что описывают пересечение множеств по какому-то признаку. Таким принципом руководствовался Джон Венн в своих схемах. И именно он лежит в основе многих популярных в интернете мемов. Вот вам один из примеров таких кругов Эйлера:

Для начала узнаем что такое комбинаторика. Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества.-4

Забавно, правда? И главное, все сразу становится понятно. Можно потратить много слов, объясняя свою точку зрения, а можно просто нарисовать простую схему, которая сразу расставит все по местам.

На этом всё.