Критерий хи-квадрат (χ^2, критерий согласия Пирсона) – это метрика, которая измеряет, насколько Модель (Model) сопоставима с фактическими наблюдаемыми данными. Вычисляется с помощью формулы:
Данные, используемые при вычислении этой Статистики (Statistics), должны быть случайными, необработанными, взаимоисключающими, взятыми из независимых переменных и взятыми из достаточно большой Выборки (Sample). Например, результаты подбрасывания монеты соответствуют этим критериям.
При проверке гипотез часто используется критерий Хи-квадрат. Статистика сравнивает размер любых расхождений между ожидаемыми и фактическими результатами, учитывая размер выборки и количество переменных. Для этих тестов используются Степени свободы (Degrees of Freedom), чтобы определить, можно ли отклонить определенную Нулевую гипотезу (Null Hypothesis) на основе общего количества переменных и выборок в эксперименте. Как и в случае с любой другой статистикой, чем больше размер выборки, тем надежнее результаты.
Существует два основных вида тестов хи-квадрат: тест на независимость, который задает вопрос о взаимоотношениях, например: «Есть ли связь между полом студента и выбором курса?»; и тест согласия, который спрашивает что-то вроде «Насколько хорошо монета в моей руке соответствует теоретически "честной" монете?»
Независимость
При изучении взаимосвязи между полом учащегося и выбранным курсом можно использовать критерий χ2 на независимость. Для проведения этого теста исследователь собирал данные по двум выбранным переменным (пол и выбранные курсы), а затем сравнивал частоту, с которой учащиеся мужского и женского пола выбирали среди предлагаемых классов, используя формулу, приведенную выше, и специальную статистическую таблицу.
Если нет взаимосвязи между полом и выбором курса (то есть, если они независимы), то следует ожидать, что фактическая частота, с которой студенты мужского и женского пола выбирают каждый предлагаемый курс, будет примерно равной. Число учащихся женского пола на любом выбранном курсе должно быть примерно равным доле студентов мужского в выборке. Тест на независимость может охарактеризовать разницу между фактическим наблюдением и теоретическим ожиданием.
Адекватность модели
Критерий Хи-квадрат предоставляет способ проверить, насколько хорошо выборка соответствует характеристикам Генеральной совокупности (Population). Мы не будем использовать выборку, если она не соответствует ожидаемым свойствам интересующей нас совокупности.
Пример. Рассмотрим воображаемую монету с вероятностью выпадения орла или решки ровно 50/50 и реальную монету, которую вы подбрасываете 100 раз. Если эта реальная монета имеет "справедливую" форму, то она также будет иметь равную вероятность приземления с обеих сторон, и ожидаемый результат подбрасывания монеты: орел выпадет 50 раз, и решка столько же. В этом случае критерий может сказать нам, насколько хорошо фактические результаты 100 подбрасываний монеты сравниваются с теоретической моделью, согласно которой честная монета даст результат 50/50. Фактический бросок может составить 50/50, 60/40 или даже 90/10. Чем дальше фактические результаты от 50/50, тем меньше соответствие этого набора бросков теоретическому ожиданию 50/50 и тем более вероятно, что эта монета на самом деле несправедлива.
Критерий Хи-квадрат и SciPy
Критерий можно вычислить с помощью функции SciPy. Для начала импортируем необходимые библиотеки:
Инициируем множества X и y , которые являются Предикторами (Predictor Variable) и Целевой переменной (Target Variable) соответственно:
Переформатируем целевую переменную с помощью метода vstack() ^ то есть превратим массивы 1-y и y в вертикальные массивы. Выполним Векторное перемножение (Dot Product) X и Y и посмотрим на результат:
Это наблюдаемые частоты признаков для каждого класса, то есть Таблица сопряжённости (Contingency Table):
Теперь вычислим ожидаемые значения:
Ожидаемые частоты выглядят так:
Наконец проведем тест Хи-квадрат, и для этого создадим два объекта score – результаты теста, и pval – P-значение (P-Value):
Реальные записи довольно плохо соответствуют ожидаемым, и это легко заметить по среднему низкому значению теста. Интересно, что создатели предполагают отображение 8 знаков после запятой, потому третий элемент ряда, "закончившийся" после третьего знака, так забавно выглядит:
Ноутбук, не требующий дополнительной настройки на момент написания статьи, можно скачать здесь.
Автор оригинальной статьи: Adam Hayes
Понравилась статья? Поддержите нас, поделившись статьей в социальных сетях и подписавшись на канал. И попробуйте наши курсы по Машинному обучению на Udemy.