Как работает жидкокристалический дисплей в современных смартфонах.

156 прочитали

Основные составные части дисплея

  Жидкокристаллические дисплеи (TFT LCD, и их модификации - TN, IPS, IGZO и т.д.) состоят укрупненно из трех составных частей: сенсорной поверхности, устройства формирования изображения (матрица) и источника света (лампы подсветки). Между сенсорной поверхностью и матрицей расположен еще один слой, пассивный. Он представляет собой прозрачный оптический клей или просто воздушный промежуток. Существование этого слоя связано с тем, что в ЖК-дисплеях экран и сенсорная поверхность представляют собой совершенно разные устройства, совмещенные чисто механически.

 Основные составные части дисплея   Жидкокристаллические дисплеи (TFT LCD, и их модификации - TN, IPS, IGZO и т.д.

   Каждая из "активных" составных частей имеет достаточно сложную структуру.

   Начнем с сенсорной поверхности (тачскрин, touchscreen). Она располагается самым верхним слоем в дисплее (если она есть; а в кнопочных телефонах, например, ее нет).
  Её наиболее распространенный сейчас тип - ёмкостная. Принцип действия такого тачскрина основан на изменении электрической емкости между вертикальными и горизонтальными проводниками при прикосновении пальца пользователя.
   Соответственно, чтобы эти проводники не мешали рассматривать изображение, они делаются прозрачными из специальных материалов (обычно для этого используется оксид индия-олова).

   Существуют также и сенсорные поверхности, реагирующие на силу нажатия (т.н. резистивные), но они уже "сходят с арены".
   В последнее время появились и комбинированные сенсорные поверхности, реагирующие одновременно и на емкость пальца, и на силу нажатия (3D-touch-дисплеи). Их основу составляет емкостной сенсор, дополненный датчиком силы нажатия на экран.

Тачскрин может быть отделен от экрана воздушным промежутком, а может быть и склеен с ним (так называемое "решение с одним стеклом", OGS - one glass solution).
   Такой вариант (OGS) имеет значительное преимущество по качеству, поскольку уменьшает уровень отражения в дисплее от внешних источников света. Это достигается за счет уменьшения количества отражающих поверхностей.
   В "обычном" дисплее (с воздушным промежутком) таких поверхностей - три. Это - границы переходов между средами с разным коэффициентом преломления света: "воздух-стекло", затем - "стекло-воздух", и, наконец, снова "воздух-стекло". Наиболее сильные отражения - от первой и последней границ.

  

Экран

   Теперь переходим к следующей части - собственно экрану.

   Он состоит из матрицы с сопутствующими слоями и лампы подсветки (тоже многослойной!).

   Задача матрицы и относящихся к ней слоев - изменить количество проходящего через каждый пиксель света от лампы подсветки, формируя тем самым изображение; то есть в данном случае регулируется прозрачность пикселей.

   Немного детальнее об этом процессе.

   Регулировка "прозрачности" осуществляется за счет изменения направления поляризации света при прохождении через жидкие кристаллы в пикселе под воздействием на них электрического поля (или наоборот, при отсутствии воздействия). При этом само по себе изменение поляризации еще не меняет яркости проходящего света.

   Изменение яркости происходит при прохождении поляризованного света через следующий слой - поляризационную пленку с "фиксированным" направлением поляризации.

   Схематично структура и работа матрицы в двух состояниях ("есть свет" и "нет света") изображена на следующем рисунке:


(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)
(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)

   Поворот поляризации света происходит в слое жидких кристаллов в зависимости от приложенного напряжения.
   Чем больше совпадут направления поляризации в пикселе (на выходе из жидких кристаллов) и в пленке с фиксированной поляризацией, тем больше в итоге проходит света через всю систему.

   Если направления поляризации получатся перпендикулярными, то свет теоретически вообще проходить не должен - должен быть черный экран.

   На практике такое "идеальное" расположение векторов поляризации создать невозможно; причем как из-за "неидеальности" жидких кристаллов, так и не идеальной геометрии сборки дисплея. Поэтому и абсолютно-черного изображения на TFT экране не может быть. На лучших LCD экранах контрастность белое/черное может быть свыше 1000; на средних 500...1000, на остальных - ниже 500.

   Остается еще к этому добавить проблемы, возникающие при прохождении света под углом (когда пользователь смотрит не перпендикулярно), и в итоге можем получить не только паразитную засветку, но и другие цвето-яркостные искажения.

   Только что была описана работа матрицы, изготовленной по технологии LCD TN+film. Жидкокристаллические матрицы по другим технологиям имеют схожие принципы работы, но другую техническую реализацию. Наилучшие результаты по цветопередаче получаются по технологиям IPS, IGZO и *VA (MVA, PVA и т.п.).

Подсветка

   Теперь переходим к самому "дну" дисплея - лампе подсветки. Хотя современная подсветка собственно ламп и не содержит.

   Несмотря на простое название, лампа подсветки имеет сложную многослойную структуру.

   Связано это с тем, что лампа подсветки должна быть плоским источником света с равномерной яркостью всей поверхности, а таких источников света в природе крайне мало. Да и те, что есть, не очень подходят для этих целей из-за низкого КПД, "плохого" спектра излучения, или же требуют "неподходящего" типа и величины напряжения свечения (например, электролюминесцентные поверхности, см. Википедию).

   В связи с этим сейчас наиболее распространены не чисто "плоские" источники света, а "точечная" светодиодная подсветка с применением дополнительных рассеивающих и отражающих слоев.

   Рассмотрим такой тип подсветки, проведя "вскрытие" дисплея телефона Nokia 105.

   Разобрав систему подсветки дисплея до её среднего слоя, мы увидим в левом нижнем углу единственный светодиод белого свечения, который направляет свое излучение внутрь почти прозрачной пластины через плоскую грань на внутреннем "срезе"  угла:

 Основные составные части дисплея   Жидкокристаллические дисплеи (TFT LCD, и их модификации - TN, IPS, IGZO и т.д.-3

   Пояснения к снимку. В центре кадра - разделенный по слоям дисплей мобильного телефона. В середине на переднем плане снизу - покрытая трещинами матрица (повреждена при разборке). На переднем плане вверху - срединная часть системы подсветки (остальные слои временно удалены для обеспечения видимости излучающего белого светодиода и полупрозрачной "световодной" пластины).
   Сзади дисплея видна материнская плата телефона (зеленого цвета) и клавиатура (снизу с круглыми отверстиями для передачи нажатия от кнопок).

   Эта полупрозрачная пластина является одновременно и световодом (за счет внутренних переотражений), и первым рассеивающим элементом (за счет "пупырышков", создающих препятствия для прохождения света). В увеличенном виде они выглядят так:


В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.
В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.

   Форма белого светодиода подсветки лучше различима на снимке с пониженной яркостью его свечения:

 Основные составные части дисплея   Жидкокристаллические дисплеи (TFT LCD, и их модификации - TN, IPS, IGZO и т.д.-5

   Снизу и сверху этой пластины подкладывают обыкновенные белые матовые пластиковые листы, равномерно распределяющие световой поток по площади:

 Основные составные части дисплея   Жидкокристаллические дисплеи (TFT LCD, и их модификации - TN, IPS, IGZO и т.д.-6

   Далее сверху на этот "бутерброд" укладывают еще один лист с особыми свойствами.

   Его условно можно назвать "лист с полупрозрачным зеркалом и двойным лучепреломлением". Помните, на уроках физики нам рассказывали про исландский шпат, при прохождении через который свет раздваивался? Вот это похоже на него, только еще и немного с зеркальными свойствами.

   Вот так выглядят обычные наручные часы, если часть их прикрыть этим листом:

 Основные составные части дисплея   Жидкокристаллические дисплеи (TFT LCD, и их модификации - TN, IPS, IGZO и т.д.-7

   Вероятное назначение этого листа - предварительная фильтрация света по поляризации (сохранить нужную, отбросить ненужную). Но не исключено, что и в плане направления светового потока в сторону матрицы эта пленка тоже имеет какую-то роль.

   Вот так устроена "простенькая" лампа подсветки в жидкокристаллических дисплеях и мониторах.

   Что касается "больших" экранов, то их устройство - аналогично, но светодиодов в устройстве подсветки там больше.

   В более старых жидкокристаллических мониторах вместо светодиодной подсветки использовали газосветные лампы с холодным катодом (CCFL, Cold Cathode Fluorescent Lamp).

Структура дисплеев AMOLED

   Теперь - несколько слов об устройстве нового и прогрессивного типа дисплеев - AMOLED (Active Matrix Organic Light-Emitting Diode).

   Устройство таких дисплеев значительно проще, так как там нет лампы подсветки.

   Эти дисплеи образованы массивом светодиодов  и светится там каждый пиксель в отдельности. Достоинствами дисплеев AMOLED являются "бесконечная" контрастность, отличные углы обзора и высокая энергоэффективность; а недостатками - уменьшенный срок "жизни" синих пикселей и технологические сложности изготовления больших экранов.

   Также надо отметить, что, несмотря на более простую структуру, стоимость производства дисплеев AMOLED пока что выше, чем дисплеев TFT LCD.

информация взята с сайта smartpuls.ru